

ParSeq

	GitHub:

	[image: GHver] [https://github.com/kklmn/ParSeq] [image: GHdate] [https://github.com/kklmn/ParSeq]

	PyPI:

	[image: PPver] [https://pypi.org/project/ParSeq/] [image: PPdate] [https://pypi.org/project/ParSeq/]

	License:

	[image: GHlic] [https://github.com/kklmn/ParSeq/blob/master/LICENSE]

	Author:

	Konstantin Klementiev (MAX IV Laboratory)

Package ParSeq is a python software library for Parallel execution of
Sequential data analysis. It implements a general analysis framework that
consists of transformation nodes – intermediate stops along the data pipeline
to visualize data, display status and provide user input – and transformations
that connect the nodes. It provides an adjustable data model (supports
grouping, renaming, moving and drag-and-drop), tunable data format definitions,
plotters for 1D, 2D and 3D data, cross-data analysis routines and flexible
widget work space suitable for single- and multi-screen computers. It also
defines a structure to implement particular analysis pipelines as relatively
lightweight Python packages.

ParSeq is intended for synchrotron based techniques, first of all spectroscopy.

A screenshot of a scanning XES analysis pipeline as an application example:

 Create analysis pipeline

Create analysis pipeline

Consider parseq_XES_scan as an example for the development steps described
below.

Basic concepts and ideas

An analysis pipeline consists of data nodes and transformations that connect
the nodes. Data nodes define array names that will appear as attributes of data
objects, e.g as item.x, with x being an attribute of a data object
item. The array values will be read from files or calculated from other
arrays. The pipeline can be used with or without GUI widgets. In the former
case, the defined node arrays will appear in the node plotting: 1D, 2D or 3D
(a stack of 2D plots).

Each transformation class defines a dictionary of transformation parameters and
default values for them. It also defines a static method that calculates data
arrays. The parameters will be attributed to each data object. The parameter
values are supposed to be changed in user supplied GUI widgets. This change can
be done simultaneously for one or several active data objects. Alternatively,
any parameter can be copied to one or several later selected data.

Each transformation can optionally define the number of threads or processes
that will start in parallel and run the transformation of several data items.
The multiprocessing python API requires the main transformation method as a
static or class method (not an instance method). Additionally, for the sake
of data transfer in multiprocessing, all input and output arrays have to be
added to inArrays and outArrays lists (attributes of the transformation
class).

In the user-supplied GUI widgets, one for each data node, all interactive GUI
elements should get registered using a few dedicated methods. The registration
will enable automatic GUI update from the active data and will run
transformations given the updated parameters, so no
signal slots [https://doc.qt.io/qt-6/signalsandslots.html]
are typically required. The registration will also enable copying
transformation parameters to other data by means of popup menus on each GUI
element.

One or more curve fitting routines can optionally be defined per data node.
Similarly to transformations, fitting solvers can run in parallel for several
data items. Fitting parameters can be constrained or tied to other parameters.

The data model is a single object throughout the pipeline. Data can be
rearranged by the user: ordered, renamed, grouped and removed. The data model
tree is present in each data node, not as a single tree instance, with the
idea also to serve as a plot legend that should always be close to the plot.
User selection in the data model is common for all transformation nodes. For 1D
data, the line color is the same in all data nodes. 1D data plotting can
optionally be done for dynamically (via mouse selection) or statically (via
check boxes) selected data. 2D and 3D data plotting is always done for one
selected data object.

The transformation class docstrings will be built by ParSeq using Sphinx [https://www.sphinx-doc.org] into an html file and will be displayed in a
help panel close to the transformation widget.

Prepare pipeline metadata and images

Create a project directory for the pipeline. Create __init__.py file that
defines metadata about the project. Note that user pipeline applications and
ParSeq itself use the module parseq.core.singletons as a means to store
global variables; the pipeline’s __init__.py module defines a few of them.
Together with the docstrings of the module, these metadata will appear in the
About dialog.

Create doc/_images directory and put an application icon there. The pipeline
transformations will have class docstrings that may also include images; those
images should be located here, in doc/_images.

Make data nodes

To define a node class means to name all necessary arrays, define their roles,
labels and units.

Make data transformations

Start making a transformation class with defining a dictionary defaultParams
of default parameter values. Decide on using multiprocessing/multithreading by
specifying nThreads or nProcesses. If any of these numbers is > 1 (the
default values are both 1), specify two lists of array names: inArrays and
outArrays. Define a static or a class method Transform.run_main().
Note, it can have a few signatures. Within the method, get the actual
transformation parameters from the dictionary data.transformParams and the
defined data arrays as attributes of data, e.g. data.x.

For expensive transformations, you should update the progress status.

For accessing arrays of other data objects, use a different signature of
Transform.run_main() that contains the allData argument. Note that in
this case multiprocessing is not possible.

Make GUI widgets

The widgets that control transformation parameters are descendants of
PropWidget. The main methods of that class are
PropWidget.registerPropWidget() and
PropWidget.registerPropGroup(). They use the Qt signal/slot mechanism to
update the corresponding transformation parameters; the user does not have to
explicitly implement the reaction slots. Additionally, these methods enable
copying transformation parameters to other data by means of popup menus, update
the GUI upon selecting data objects in the data tree, start the corresponding
transformation and operate undo and redo lists.

Because each transformation already has a set of default parameter values,
these GUI widgets can gradually grow during the development time, without
compromising the data pipeline functionality.

Provide docstrings in reStructuredText markup, they will be built by Sphinx and
displayed near the corresponding widgets.

Make fitting worker classes

Similarly to a transformation class, a fitting class defines a dictionary
defaultParams, defines multiprocessing/multithreading and a static or a class
method Fit.run_main().

Make data pipeline

This is a small module that instantiates the above nodes, transformations, fits
and widgets and connects them together.

Create test data tree

Put a few data files in a local folder (i.e. data) and create a module that
defines a function that loads the data into a data tree, defines
suitable transformation parameters and launches the first transformation (the
next ones will start automatically).

Create pipeline starter

The starter should understand command line arguments and prepare options for
loading the test data and to run the pipeline with and without GUI.

Creating development versions of analysis application

Copy the whole folder of the application to the same level but with a different
name, e.g. append a version suffix. In the import section in the start script
change the import name to the above created folder name. Done.

 Data nodes

Data nodes

Data nodes are intermediate stops along the data pipeline. Their main purposes
are to visualize data, display transformation status, select parameters of data
transformations, possibly stop or split data propagation or combine with other
data. Each data node defines and operates arrays that get their values in the
upstream part of the pipeline.

	
class parseq.core.nodes.Node(widgetClass=None)

	Parental Node class. Must be subclassed to define the following class
variables:

	name: str
	The name of the node, also shown as a GUI tab and also is a section
name in ini file. Must be unique in the pipeline.

	arrays: OrderedDict of dicts
	Describes the arrays operated in this node. Note, this object only
contains data description; the actual data arrays will be attributed to
data objects (items). The keys of arrays are names of these arrays,
the values are dictionaries that optionally contain the following
kwargs:

	role: str, default = ‘1D’ (not plotted)
	The array’s role. Can be ‘x’, ‘y’, ‘yleft’, ‘yright’, ‘z’ or ‘1D’
for 1D arrays (one and only one x-axis array is required), ‘2D’ for
2D plots and ‘3D’ for stacked 2D images. ‘0D’ values are listed in
the data tree. ‘optional’ array is not required in data files and
can be used as an auxiliary. Unless with a ‘0D’ role, each array
will appear in data location dialog to define its location.

	raw: str, default = array name
	Can define an intermediate array at the pipeline head when the main
array (the key in arrays) is supposed to be obtained by an after
load transformation. The plotted array is still the main one. The
idea of having a raw version of an array is in the possibility of
creating a transformation that not only begins at the first node
but can also end at the first node.

	qLabel: str, default = array name
	Used in the GUI labels.

	plotLabel: str, or list of str, default = qLabel
	Axis label for the GUI plot. For 2D or 3D plots the 2- or 3-list
that corresponds to the plot axes. The list may contain keys from
arrays and then the label and unit are taken from that dictionary
(the entry of arrays) or, alternatively, the list elements
themselves are axis labels. For 0D values, this parameter may hold
a format string to be used with the format() method.

	qUnit: str, default None
	Optional data unit to be displayed in the GUI.

	plotUnit: str, default = qUnit
	Attached to the plot label in parentheses. For example,
for Å^-1: qUnit = u’Å⁻¹’ and plotUnit = r’Å$^{-1}$’.

	plotParams: dict, default is {} that assumes thin solid lines
	Default parameters for plotting. Can have the following keys:
linewidth (or lw), style, symbol and symbolsize. Note
that color is set for a data item and is equal across the nodes, so
it is set not here.

	checkShapes: list of str
	Can be useful at data file reading. If given, the list contains keys of
arrays. The corresponding arrays will be checked for equal shape. The
names of multidimensional arrays can be ended by a slice. Example:
checkShapes = [‘theta’, ‘i0’, ‘xes3D[0]’].

	auxArrays: list of lists
	Can be useful only for data export. Array names are grouped together so
that the 1st element in a group is an x array and the others are y
arrays. This grouping is respected only for the export of 1D data.

	
__init__(widgetClass=None)

	Instantiates the node and optionally passes a Qt widget class of a
user dialog that defines transformation parameters.

	
get_prop(arrayName, prop)

	Returns the property prop for a given array name defined in this
node. This method can be useful in creating the GUI part of a
transformation node.

	
is_between_nodes(nodeName1, nodeName2, node1in=True, node2in=True)

	Returns True if this transformation node is between the given two nodes
in the sense of data propagation in the pipeline. This method can be
useful in creating the GUI part of a transformation node.

	nodeName1 and nodeName2: Node
	nodeName2 can be None, the right end is infinite then.

	node1in and node2in: bool
	define whether the interval is closed (when True) or open.

 Data model

Data model

The ParSeq data model is a hierarchical tree model, where each element has zero
or more children. If an element has zero children, it is called item and is a
data container. If an element has at least one child, it is called group. All
items and groups are instances of Spectrum.

The tree model can be manipulated in a script, and the following reference
documentation explains how. Otherwise, most typically it is used within the
ParSeq GUI, where the tree model feeds the model-view-controller [https://doc.qt.io/qt-6/model-view-programming.html] software architecture of
Qt, where the user does not have to know about the underlying objects and
methods. See Notes on usage of GUI.

	
class parseq.core.spectra.Spectrum(madeOf, parentItem=None, insertAt=None, **kwargs)

	This class is the main building block of the ParSeq data model and is
either a group that contains other instances of Spectrum or an
item (data container). All elements, except the root, have a parent
referred to by parentItem field, and parents have their children in a
list childItems. Only the root item is explicitly created by the
constructor of Spectrum, and this is done in the module that
defines the pipeline. All other tree elements are typically created by the
parent’s insert_data() or insert_item() methods.

	
__init__(madeOf, parentItem=None, insertAt=None, **kwargs)

	
	madeOf
	is either a file name, a callable, a list of other
Spectrum instances (for making a combination) or a
dictionary (for creating branches).

	parentItem
	is another Spectrum instance or None (for the tree root).

	insertAt: int
	the position in parentItem.childItems list. If None, the spectrum
is appended.

	kwargs: dict
	defaults to the dictionary: dict(alias=’auto’, dataFormat={},
originNodeName=None, terminalNodeName=None, transformNames=’each’,
copyTransformParams=True). The default kwargs can be changed in
parseq.core.singletons.dataRootItem.kwargs, where dataRootItem
is the root item of the data model that gets instantiated in the
module that defines the pipeline.

	dataFormat: dict
	is assumed to be an empty dict for a data group and must be
non-empty for a data item. As a minimum, it defines the key
dataSource and sets it to a list of hdf5 names (when for
hdf5 data), column numbers or expressions of ‘Col1’, ‘Col2’
etc variables (when for column data). It may define
‘conversionFactors’ as a list of either floats or strings;
a float is a multiplicative factor that converts to the node’s
array unit and a string is another unit that cannot be
converted to the node’s array unit, e.g. the node defines an
array with a ‘mA’ unit while the data was measured with a
‘count’ unit. It may define ‘metadata’: a comma separated str
of hdf5 attribute names that define metadata.

	originNodeName, terminalNodeName: str
	The data propagation is between origin node and terminal node,
both ends are included. If undefined, they default to the 0th
node (the head of the pipeline) and the open end(s). If a node
is between the origin node and the terminal node (in the data
propagation sense) then the data is present in the node’s data
tree view as alias and is displayed in the plot.

	transformNames
	A list of transform names (or a single str ‘each’). It defines
whether a particular transform should be run for this data.

	copyTransformParams: bool, default True.
	Controls the way the transformParams of the Spectrum are
initialized: If False, they are copied from defaultParams of
all transforms. If True, they are copied from the first
selected spectrum when at least one is selected or otherwise
from the ini file.

	
find_data_item(alias=None)

	Finds the first data item with a given alias. Returns None if
fails.

	
get_items(alsoGroupHeads=False)

	Returns a list of all items in a given group, also included in all
subgroups.

	
insert_data(data, insertAt=None, **kwargs)

	This method inserts a tree-like structure data into the list of
children. An example of data:
data=["groupName", ["fName1.dat", "fName2.dat"]] for a group
with two items in it. All other key word parameters lumped into
kwargs are the same as of __init__().

	
insert_item(name, insertAt=None, **kwargs)

	This method inserts a data item name into the list of children. All
other key word parameters lumped into kwargs are the same as of
__init__() and additionally configData that can pass an
instance config.ConfigParser() that contains a saved project.

 Data transformations

Data transformations

Data transformations provide values for all the arrays defined in one
transformation node (fromNode) given arrays defined in another transformation
node (toNode). Each transformation defines a dictionary of transformation
parameters; the values of these parameters are individual per data item. Each
transformation in a pipeline requires subclassing from Transform.

	
class parseq.core.transforms.Transform(fromNode, toNode)

	Parental Transform class. Must be subclassed to define the following class
variables:

name: str name that must be unique within the pipeline.

defaultParams: dict of default transformation parameters for new data.

Transforms, if several are present, must be instantiated in the order of
data flow.

The method run_main() must be declared either with @staticmethod or
@classmethod decorator. A returned not None value indicates success.

nThreads or nProcesses can be > 1 to use threading or multiprocessing.
If both are > 1, threading is used. If nThreads or nProcesses > 1, the
lists inArrays and outArrays must be defined to send the operational
arrays (those used in run_main()) over process-shared queues. The
value can be an integer, ‘all’ or ‘half’ which refer to the hardware limit
multiprocessing.cpu_count().

progressTimeDelta, float, default 1.0 sec, a timeout delta to report on
transformation progress. Only needed if run_main() is defined with
a parameter progress.

	
__init__(fromNode, toNode)

	fromNode and toNode are instances of Node. They may be
the same object.

	
classmethod run_main(data)

	Provides the actual functionality of the class.
Other possible signatures:

run_main(cls, data, allData, progress)

run_main(cls, data, allData)

run_main(cls, data, progress)

data is a data item, instance of Spectrum.

allData and progress are both optional in the method’s signature.
The keyword names must be kept as given above if they are used and must
be in this given order if both are present.

allData is a list of all data items living in the data model. If
allData is needed, both nThreads or nProcesses must be set to 1.

progress is an object having a field value. A heavy transformation
should periodically update this field, like this:
progress.value = 0.5 (means 50% completion). If used with GUI,
progress will be visualized as an expanding colored background
rectangle in the data tree. Quick transformations do not need progress
reporting.

Should an error happen during the transformation, the error state will
be notified in the ParSeq status bar and the traceback will be shown in
the data item’s tooltip in the data tree view.

Returns True when successful.

 User transformation widgets

User transformation widgets

If the data pipeline is supposed to take user actions from GUI, each
transformation node should have a dedicated Qt widget that sets relevant
transformation parameters. ParSeq offers the base class PropWidget
that reduces the task of creating a widget down to instantiating Qt control
elements, putting them in a Qt layout and registering them. The docstrings of
the user widget class will be built by ParSeq using Sphinx documentation system
into an html file that will be displayed under the corresponding widget window
or in a web browser.

User transformation widgets can profit from using silx library [https://www.silx.org/], as ParSeq already uses it heavily. It has many
widgets that are internally integrated to plotting e.g. ROIs. A good first
point of interaction with silx is its collection of examples.

	
class parseq.gui.propWidget.PropWidget(*args: Any, **kwargs: Any)

	The base class for user transformation widgets and a few internal
ParSeq widgets. The main idea of this class is to automatize a number of
tasks: setting GUI from data, changing transformation parameters of data
from GUI, copying parameters to other data, starting transformation and
inserting user changes into undo and redo lists.

	
__init__(parent=None, node=None)

	node is the corresponding transformation node, instance of
Node. This parental __init__() must be invoked in the derived
classes at the top of their __init__() constructors. In the constructor
of the derived class, the user should create control elements and
register them by using the methods listed below.

	
registerPropGroup(groupWidget, widgets, caption)

	Registers a group widget (QGroupBox) that contains individual
widgets , each with its own data properties. This group will appear
in the copy popup menu.

	
registerPropWidget(widgets, caption, prop, **kw)

	Registers one or more widgets and connects them to one or more
transformation parameters.

widget: a sequence of widgets or a single widget.

caption: str, will appear in the popup menu in its “apply to” part.

prop: str or a sequence of str, transformation parameter name(s).

Optional key words (in kw):

convertType: a Python type or a list of types, same length as prop,
that is applied to the widget value.

hideEmpty: bool, applicable to edit GUI elements. If True and the
prop is None or an empty str, the edit element is not visible.

emptyMeans: a value that is assigned to prop when the edit element
is empty.

copyValue: a single value or a list of length of prop. When copy
prop to other data items, this specific value can be copied. If
copyValue is a list of length of prop, it can mix specific values
and a str ‘from data’ that signals that the corresponding prop is taken
from the actual data transformation parameter.

transformNames list of str
The transforms to run after the given widgets have changed. Defaults to
the names in self.node.transformsIn.

dataItems a list of data items
None (the transformation parameter will be applied to selected items)
or ‘all’ (applied to all items).

	
registerStatusLabel(widget, prop, **kw)

	Registers a status widget (typically QLabel) that gets updated when the
transformation has been completed. The widget must have setData() or
setText() or setValue() method.

Optional key words:

hideEmpty: same as in registerPropWidget().

textFormat: format specification, as in Python’s format() function [https://docs.python.org/library/string.html#format-specification-mini-language]
e.g. ‘.4f’ .

 Notes on usage of GUI

Notes on usage of GUI

Load project

To start testing a GUI, load a test project, typically located in saved
directory. The “Load project” dialog has a preview panel that displays all node
plots in the project, just browse over them. The initial visible plot displays
the transformation node that was active when the project was saved.

Docked node widgets

With the idea of flexible usage of screen area, the node widgets were made
detachable and dockable into the main ParSeq window. To do this, drag a node
widget by its caption bar. To dock it back, hover it over the main window or
use the dock button at the right end of the caption bar.

The state of each node widget (docked or floating) and its floating geometry is
saved in ini file and project files.

File tree and data formats, metadata

The file tree is by default visible only in the pipeline head node(s). If
needed, make it visible/hidden by the vertical button of the leftmost splitter
widget “files & containers”.

When you click on an entry in the data tree, the corresponding file or hdf5
entry will get highlighted in the starting transformation node widget. When you
browse the file tree, the highlight color is green if this entry can be loaded,
i.e. the data format fields in the data format widget are defined. To define
the fields (array names), one can highlight one or several hdf5 datasets and
use popup menu commands. Note that you can use hdf5 data sets from various hdf5
data groups or even hdf5 data files, not necessarily from one data group when
you load one data item.

For column files, one should define the file header and expressions of
variables Col0, Col1 etc. for data fields (arrays). If an array definition
is just a column, one can reduce it to the ordinal number of that column, so
type 0 instead of Col0.

Metadata can be composed of string hdf5 fields or for column files they are
copied from the header. Metadata are displayed in a panel below the plot in
each node.

The format fields in the “data format” dialog can be saved into an ini file
(.parseq/formats.ini) and later restored from it using the popup menu when
right-clicked on a data file.

The tabs of “data format” dialog have some help text in their tooltips.

Data tree

The data tree can be populated from the file tree by using the popup menu or by
a drag-and-drop action.

The newly loaded data get their set of transformation parameters from the first
previously selected data item. If no items have been previously loaded, the
parameters are read from the ini file. If the ini file does not exist yet, the
parameters get their values from defaultParams defined in each transformation
class.

Use the popup menu or corresponding keyboard shortcuts to rearrange the data
tree.

The Qt tooltip on each data entry provides data path, shape and size. If an
error occurs during a transformation, the tooltip also contains the last
exception traceback.

In 1D transformation nodes, one can change the data visibility mode by clicking
on the “eye” header section. Try these modes while selecting different data
entries or groups.

Line properties of the selected data items can be set from the popup menu or by
clicking on the data column header. New data get their line properties from the
previously active data. The first data get their plot settings from the
optional plotParams of node’s arrays.

Combine dialog

A limited number of combination functions acting on several selected data items
can be performed via the “combine” dialog that can be found under the data tree
widget.

Plots

All types of plots implemented in ParSeq are taken from silx library [https://www.silx.org/].
Find more about their functionality here [http://www.silx.org/doc/silx/latest/modules/gui/plot/index.html?highlight=plot#module-silx.gui.plot].

Bear in mind that if several items have the same alias, silx displays only one
of them, so make sure aliases are unique. Parseq will try to append a numbered
suffix to the alias if the added data have the same file name. Aliases can
always be changed by the user.

In 1D plotting window, clicking on a curve will select the corresponding data
item in the data tree widget. Auxiliary curves can be added in user-defined
transformation widgets by specifying a method extraPlot(). The curves should
have their legend property defined in the following format: the data item
alias followed by a dot followed by a sub-name. If this convention is followed,
the curves become clickable, which will select the corresponding data item in
the data tree. Selected data items are plotted on top of unselected items.

Fit widgets

If one or more fit widgets were specified for a given node, they appear in
separate QSplitter under the node’s plot. In the initial view, the splitters
are collapsed.

Help panel

The help panel under transformation widgets is hidden by default and can be
made visible by clicking on the small button “help” at the very bottom of the
main window. Alternatively, it can be opened in the system browser.

About dialog

The about dialog displays the connectivity between the pipeline nodes in a
dynamically created svg graph. If a fit is defined in a node, it is also
displayed here.

Undo and redo lists

When a transformation parameter has been changed or a data item has been
deleted, this action is inserted into the undo list. Clicking on the big undo
button will revert the last action and put it into the redo list (not for the
undelete operation). Any undo action can also be executed separately, not
necessarily in the reverse order, by using the drop down-menu. Note, the undo
entry for a delete operation will keep the reference to the deleted item, so to
clean up the memory, this entry should be individually removed from the undo
list.

Save project, data and plot scripts

The present data tree and all transformation parameters of all data items can
be saved into a project file that has an ini text file structure.
Simultaneously, data arrays defined in each node can optionally be exported as
a few chosen data types. Note that data arrays will be exported only for the
currently selected data items, not for all data. Two types of data plotting
scripts can also be saved. These scripts will plot the exported data and are
provided with the idea to help the user adjust their publication quality
graphs.

In the saved project, file path to each data item is saved in two versions: as
an absolute path and as a relative path in respect to the project location.
When the project is copied together with the files to a new location, the
project should be directly loadable. When copied from a GPFS location at a
beamline, this may not work, and the relative paths have to be manually edited
by a Search/Replace operation in a text file editor.

 The MIT License

The MIT License

Copyright (c) 2018 Konstantin Klementiev

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 Python Module Index

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 parseq	

 	
 	
 parseq.core	

 	
 	
 parseq.core.nodes	

 	
 	
 parseq.core.spectra	

 	
 	
 parseq.core.transforms	

 	
 	
 parseq.gui	

 	
 	
 parseq.gui.propWidget	

 Index

Index

 _
 | F
 | G
 | I
 | M
 | N
 | P
 | R
 | S
 | T

_

 	
 	__init__() (parseq.core.nodes.Node method)

 	(parseq.core.spectra.Spectrum method)

 	(parseq.core.transforms.Transform method)

 	(parseq.gui.propWidget.PropWidget method)

F

 	
 	find_data_item() (parseq.core.spectra.Spectrum method)

G

 	
 	get_items() (parseq.core.spectra.Spectrum method)

 	
 	get_prop() (parseq.core.nodes.Node method)

I

 	
 	insert_data() (parseq.core.spectra.Spectrum method)

 	
 	insert_item() (parseq.core.spectra.Spectrum method)

 	is_between_nodes() (parseq.core.nodes.Node method)

M

 	
 	
 module

 	parseq.core

 	parseq.core.nodes

 	parseq.core.spectra

 	parseq.core.transforms

 	parseq.gui

 	parseq.gui.propWidget

N

 	
 	Node (class in parseq.core.nodes)

P

 	
 	
 parseq.core

 	module

 	
 parseq.core.nodes

 	module

 	
 parseq.core.spectra

 	module

 	
 	
 parseq.core.transforms

 	module

 	
 parseq.gui

 	module

 	
 parseq.gui.propWidget

 	module

 	PropWidget (class in parseq.gui.propWidget)

R

 	
 	registerPropGroup() (parseq.gui.propWidget.PropWidget method)

 	registerPropWidget() (parseq.gui.propWidget.PropWidget method)

 	
 	registerStatusLabel() (parseq.gui.propWidget.PropWidget method)

 	run_main() (parseq.core.transforms.Transform class method)

S

 	
 	Spectrum (class in parseq.core.spectra)

T

 	
 	Transform (class in parseq.core.transforms)

 <no title>

 ParSeq

ParSeq

	GitHub:

	[image: GHver] [https://github.com/kklmn/ParSeq] [image: GHdate] [https://github.com/kklmn/ParSeq]

	PyPI:

	[image: PPver] [https://pypi.org/project/ParSeq/] [image: PPdate] [https://pypi.org/project/ParSeq/]

	License:

	[image: GHlic] [https://github.com/kklmn/ParSeq/blob/master/LICENSE]

	Author:

	Konstantin Klementiev (MAX IV Laboratory)

Package ParSeq is a python software library for Parallel execution of
Sequential data analysis. It implements a general analysis framework that
consists of transformation nodes – intermediate stops along the data pipeline
to visualize data, display status and provide user input – and transformations
that connect the nodes. It provides an adjustable data model (supports
grouping, renaming, moving and drag-and-drop), tunable data format definitions,
plotters for 1D, 2D and 3D data, cross-data analysis routines and flexible
widget work space suitable for single- and multi-screen computers. It also
defines a structure to implement particular analysis pipelines as relatively
lightweight Python packages.

ParSeq is intended for synchrotron based techniques, first of all spectroscopy.

A screenshot of a scanning XES analysis pipeline as an application example:

_images/node1.png
|
;

include |*.hs, *.dat
I

g
§

Name

> | parseq XAS
> | parseq_XES_dispersive
> | parseq_XES scan
> | parseq_XES scan_reduced
v 1 parseq_XES_scan_running_ROI
v | data
v om 2020111205
> @& entryl0170
> m entry10190
> m entry10191
> m Nb-elastic-18600_Kb13_92_¢
> m Nb-elastic-18640_Kb13_93 ¢
> m NbO2_Kb13_76_data_000001
> 7 doc
> 1 saved
> 1 saved3
> | parseq XES_scan_shear_line v
< >

10 2~ corrected 3D thetascan 4 1 - 3D theta scan

19 3 - 2D theta scan

[] auto load new data from current location
auto load every [1st 3 file/dataset

data format: mask Eiger and find shear
header arrays conversion | metadata | save|

©
1(counts) [1"] + d["measurement/albaem01_ch2"]
XES3D(counts) |data_000001.h5::/entry/data/data

1 selected: 20201112/entry10170

). 4 - 1D energy xEs

fles 8 containers: mask Eiger and find shear.

data name @

20201112/entry10170
v elastic
elastic_18600
elastic_18640

data: mask Eicer and find shear

Position: 44, 392.0, 381.0

horizontal pixel

+ X7 @ dv |

6[44] = 1.020°

1000

800

600

400

200

420 440 460

tangential pixel

Value: 0

Axes selection: | () Dim1-Dim2 + | Image index (Dim0): 1

‘combine: mask Eiger and find shear

metadata: mask Eiger and find shear
title: ascan xtal2_pit 0.8 1.5 140 1.0
start_time: 2020-11-15T16:
end_time: 2020-11-15T16:

O ER=

limits: 0, 140 B B

transform: mask Eiger and find shear

pixel value cutoff

cutoff 2100 2
max piel = 7 in frame 4
maxsum = 17238 inframe 4
find shear
\ Mode: [3lpoints

geometry counts

center: 56078.5, -1351.0

radii: 55667.4, 556913 7931
angles: 3.1173, 3.0974

Accept ROL

help: mask Eiger and find shear
Mask Eiger

open in browser

This transformation sets a low pass
filter to the detector pixels. Look at the
actual maximum pixel value in the
status field zax s:xez and at the top of
the plots color bar. This maximum
value is among all pixel that fall below
the cutoff threshold

Find shear

Emission lines are seen on the detector
as inclined and curved bands. In order
to reduce one data dimension, along
nerizontal pixez, We first bring this
curved hand fn an nrinht nasifion This

3loaded mem 85% CPU2%

_static/file.png

nav.xhtml

 Table of Contents

 		
 ParSeq

 		
 Create analysis pipeline

 		
 Basic concepts and ideas

 		
 Prepare pipeline metadata and images

 		
 Make data nodes

 		
 Make data transformations

 		
 Make GUI widgets

 		
 Make fitting worker classes

 		
 Make data pipeline

 		
 Create test data tree

 		
 Create pipeline starter

 		
 Creating development versions of analysis application

 		
 Data nodes
